IIT Roorkee researchers discover new antibacterial molecule 'IITR00693'
Ishita Ranganath | March 11, 2023 | 04:59 PM IST | 2 mins read
New antibacterial molecule, IITR00693 discovered by IIT Roorkee researchers has the potential to fight against drug-resistant infections.
NEW DELHI: The researchers at the Indian Institute of Technology Roorkee (IITR) have discovered a discovered a new antibacterial small molecule, IITR00693 that has the potential to fight against drug-resistant infections.
The research team was led by IIT Roorkee, department of bioscience and bioengineering, professor, Ranjana Pathania along with Mahak Saini and Amit Gaurav; AIIMS Rishikesh, Ashish Kothari and Balram Ji Omar; Government Medical College and Hospital, Chandigarh, Varsha Gupta and Assam University, Amitabha Bhattacharjee.
Also Read | IIT Roorkee to host Uttarakhand Udyog Mahotsav
The findings of the research study were published in American Chemical Society Journal – ACS Infectious Diseases. The molecule was discovered after a rigorous screening process and has shown potent antibacterial activity against a wide range of Gram-positive and Gram-negative bacteria, including some of the most problematic drug-resistant strains.
The molecule, IITR00693 not only strikes down the most stubborn bacteria but also prevents the emergence of resistance, ensuring that it remains effective for generations to come. This study could open new research avenues on treatment options for soft and skin tissue infections.
Also Read | IIT Roorkee invites applications for MTech VLSI programme; Industry professionals eligible
Talking about the discovery, IIT Roorkee, department of biosciences and bioengineering, Ranjana Pathania, said: "We aimed to identify a small molecule that can potentiate currently used antibiotics. IITR00693, a novel antibacterial small molecule, potentiates the antibacterial activity of polymyxin B against Staphylococcus aureus and Pseudomonas aeruginosa. Herein, we investigated in detail the mode of action of this interaction and the molecule’s capability to combat soft-tissue infections caused by S. aureus and P.aeruginosa."
Speaking about the study results, IIT Roorkee, department of biosciences and bioengineering, Mahak Saini, who is among the research paper’s authors, said:"The results indicate that IITR00693 has the highest safety index and efficacy. The synergy between IITR00693 and polymyxin B against Gram-positive S. aureus was intriguing, as polymyxin B is specifically active against Gram-negative bacteria; hence we selected this combination for further detailed investigations."
Follow us for the latest education news on colleges and universities, admission, courses, exams, research, education policies, study abroad and more..
To get in touch, write to us at news@careers360.com.
Next Story
]Featured News
]- Skill India Mission’s JSS scheme needs higher budget, infrastructure boost: Govt cites study in parliament
- Education Budget 2026: OBC, ST scholarships get Rs 1,000 crore boost, minority scheme funds slashed
- Budget 2026: Higher education outlay up 11%; Rs 200 crore for PM Research Chairs; PM USHA sees 55% cut in RE
- Health Education Budget 2026: Major boost to allied health sciences, 3 new AIIAs, NIMHANS in north India
- Rice research needs fortification too, say scientists at agriculture universities
- SRCC false caste-bias case: DU college says ‘no such incident’ but video viral amid UGC equity regulations row
- Economic Survey 2026: Upgrade ITI diplomas to degrees to improve jobs, unify apprenticeship schemes
- Economic Survey 2026: Make India ‘education tourism’ hub; offer international students Ayurveda, yoga courses
- Economic Survey 2026 proposes NIRF-like school ranking, PISA-type Class 10 test, more composite schools
- From Rohith to Reform: UGC Equity Regulations 2026, born from tragedies, threaten caste dominance, not merit